

6/1 Place value in numbers to 10million

The position of the digit gives its size

<u>Example</u>

The value of the digit '1' is 10 000 000 The value of the digit '2' is 2 000 000 The value of the digit '3' is $300\ 000$ The value of the digit '4' is $40\ 000$

6/1 Round whole numbers

Example 1- Round 342 679 to the nearest 10 000					
0	Step 1 - Find the 'round-off digit' - 4				
0	Step 2 - Move one digit to the right - <mark>2</mark>				

<u>4 or less</u>? YES – leave 'round off digit' unchanged – Replace following digits with zeros

ANSWER - 340 000

Example 2- Round 345 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

<u>5 or more</u>? YES – add one to 'round off digit' – Replace following digits with zeros

ANSWER - 350 000

6/2 <u>Negative numbers</u>				
	•			
-3 -2 -1 0 1	2 3			
2 > −2 → We say 2 is b				
-2 < 2→ We say -2 is	less than 2			
The difference between 2 and				
Remember the rules: • When subtracting go do • When adding go up the				
• 8 + - 2 is the same (as 8 - 2 = 6			
 8 - + 2 is the same of 				
 8 2 is the same of 				
6/3 <u>Multiply numbers & a</u>	estimate to check			
e.g. 152 x 34	NN METHOD			
152				
34				
	<u> </u>			
	(x30)			
5168				
6/3 Use estimates to ch				
152 x 34				
≈150 x 30	≈ is the			
≈4500	symbol for			
≈4500	'roughly equals'			
6/3 <u>Divide numbers & estimate to check</u>				
<u>With a remainder also expressed as a fraction</u>				
With a remainder also expres	<u>sed as a fraction</u>			
with a remainder also express e.g. 4928 ÷ 32 BUS SH				
e.g. 4928 ÷ 32 <u>BUS S</u>	HELTER METHOD			
e.g. 4928 ÷ 32 <u>BUS S</u>	HELTER METHOD			
e.g. 4928 ÷ 32 BUS SH 0 2 8 15)4 3 2				
e.g. 4928 ÷ 32 0 2 8 15)4 3 2 -3 0 \downarrow	HELTER METHOD			
e.g. $4928 \div 32$ 0 2 8 15)4 3 2 $-3 0 \downarrow$ 1 3 2	HELTER METHOD			
e.g. $4928 \div 32$ 0 2 8 15)4 3 2 $-3 0 \downarrow$ 1 3 2 -1 2 0	HELTER METHOD			
e.g. $4928 \div 32$ 0 2 8 15)4 3 2 $-3 0 \downarrow$ 1 3 2 -1 2 0 1 2	$\frac{028}{15} + 12$			
e.g. $4928 \div 32$ 0 2 8 15)4 3 2 $-3 0 \downarrow$ 1 3 2 -1 2 0	$\frac{028}{15} + 12$			
e.g. $4928 \div 32$ 0 2 8 15)4 3 2 $-3 0 \downarrow$ 1 3 2 -1 2 0 1 2	$\frac{1028}{15} + 12$			

6/3 continued With a remainder expressed as a decimal $ \begin{array}{r} 028.8\\15)432.0\\-30\\132\\0\\132\\-120\\12\\\end{array} $ ANSWER - 432 ÷ 15 = 28.8 6/3 Use estimates to check calculations 432 ÷ 15 $\approx 450 \div 15$ ≈ 30 6/4 Factors, multiples & primes e.g. Factors of 12 are: Factors of 18 are:	e.g. $3 + \frac{4 \times 6}{7} - 5 = 22$ first (2+1) $\times 3 = 9$ first 6/6 Addition • Line up the digits in the correct columns e.g. $48p + \pounds 2.84 + \pounds 9$ 0.48 2.84 <u>9.00+</u> $\pounds 1\frac{2.32}{11}$ 11 6/6 Subtraction • Line up the digits in the correct columns e.g. $645 - 427$ H T U $6\frac{34}{15}$ 42.7
1 12 2 6 3 4 3 6	<u>4 2 7</u> 2 1 8 6/7 Equivalent fractions
The common factors of 12 & 18 are: 1, 2, 3, 6, <u>The Highest Common Factor is: 6</u>	• To simplify a fraction Example: $\frac{27}{36}$ First find the highest common factor of the numerator and denominator - which is 9, then divide $\frac{27}{36} \stackrel{.9}{.9} = \frac{3}{4}$ • To change fractions to the same denominator Example: $\frac{3}{4}$ and $\frac{2}{3}$
6/5 Order of operations Bracket Indices Divide Multiply Do these in the order they appear Add Subtract	Find the highest common multiple of the denominators - which is 12, then multiply: $\frac{3}{4}_{x3}^{x3} = \frac{9}{12} \text{ and } \frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

 \circ Make the denominators the same

e.g. $\frac{1}{5} + \frac{7}{10}$	e.g. $\frac{4}{5} - \frac{2}{3}$
$= \frac{2}{10} + \frac{7}{10}$	$= \frac{12}{15} - \frac{10}{15}$
$=\frac{1}{10}$	= Do <u>not</u> add denominators

6/9 Multiply fractions

• Write 5 as
$$\frac{5}{1}$$

• Multiply numerators & denominators
e.g. $5 \times \frac{2}{3}$
 $= \frac{5}{1} \times \frac{2}{3}$
 $= \frac{10}{3} = 3\frac{1}{3}$

6/9 Divide fractions

• Write 5 as
$$\frac{5}{1}$$

- Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g.
$$\frac{2}{3} \div 5$$
 e.g. $\frac{4}{5} \div \frac{2}{3}$

 = $\frac{3}{2} \times \frac{1}{5}$
 = $\frac{4}{5} \times \frac{3}{2}$

 = $\frac{3}{10}$
 = $\frac{12}{10}$ = $\mathbf{1}\frac{2}{10}$ = $\mathbf{1}\frac{1}{5}$

6/10 <u>Multiply/divide decimals by 10, 100</u>

thousands	hundreds	tens	units	•	tenths	hundredths	thousandths
4	3	5	2	•	6	1	7

• To <u>multiply</u> by 10, move each digit one place to the <u>left</u>

e.g. 35.6 x 10 = 356

Hundreds	Tens	Units		tenths
	3	_ 5	•	- 6
3 🖌	5	6	•	

• To <u>divide</u> by 10, move each digit one place to the <u>right</u>

e.g. 35.6 ÷ 10 = 356= 3.56

Tens	Units	•	tenths	hundredths
3 <	5 _	•	6	
	3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u> Move the <u>decimal point the opposite way</u>

6/11 <u>Multiply decimals</u>

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

<u>Example</u> :	0.06 x 8		
	=> 6 x 8		
	=> 48		
	=> 0.48		

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

<u>Example</u>: 6.28 ÷ 5 <u>1 . 2 5 6</u> 5) 6 . ¹2²8³0

6/12 <u>Fraction, decimal, percentage</u> <u>equivalents</u>

LEARN THESE:

$$\frac{1}{4} = 0.25 = 25\%$$
$$\frac{1}{2} = 0.5 = 50\%$$
$$\frac{3}{4} = 0.75 = 75\%$$
$$\frac{1}{10} = 0.1 = 10\%$$

• Percentage to decimal to fraction $27\% = 0.27 = \frac{27}{100}$ $7\% = 0.07 = \frac{7}{100}$ $70\% = 0.7 = \frac{70}{100} = \frac{7}{10}$

• Decimal to percentage to fraction 0.3 = 30% = $\frac{3}{10}$

 $0.03 = 3\% = \frac{3}{100}$ $0.39 = 39\% = \frac{39}{100}$

• Fraction to decimal to percentage = $\frac{80}{100}$ = 80% = 0.8

Change to 100

 $\frac{0.375}{\frac{3}{8}} = 3 \div 8 = 8)3.^{3}0^{6}0^{4}0 = 0.375 = 37.5\%$

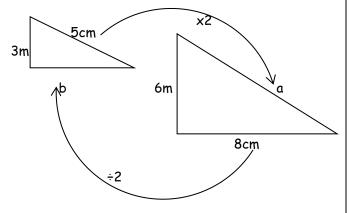
$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

Cancel by 3

6/13 <u>Fraction of quantity</u> • <u>4</u> means ÷ 5 × 4 5 e.g. To find <u>4</u> of £40 5

 $\pm 40 \div 5 \times 4 = \pm 40$

- 6/13 <u>Percentage of quantity</u>


<u>Use only</u>

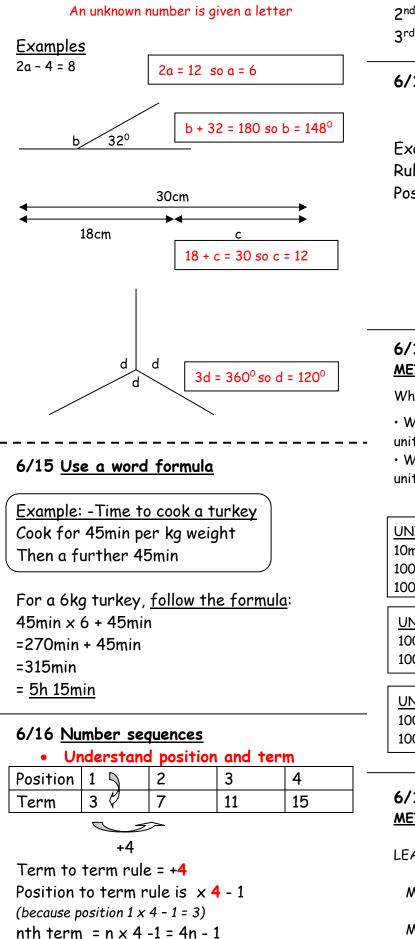
 $\circ \quad 50\% - \frac{1}{2} \\ \circ \quad 10\% - \frac{1}{10} \\ \circ \quad 1\% - \frac{1}{100}$

Example :To find 35% of £40010% = £4020% = £805% = £2035% = £140

6/14 <u>Similar shapes</u>

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor = $6 \div 3 = 2$ Length a = $5 \times 2 = 10$ cm Length b = $8 \div 2 = 4$ cm


6/14 <u>Unequal sharing</u> –

Example- unequal sharing of sweets A gets B gets

3 shares => 3 sweets => 12 sweets X4 16 sweets X4

6/15 Express missing numbers

algebraically

Generate terms of a sequence

If the nth term is 5n + 1 $1^{s^{\dagger}}$ term (n=1) = 5x1 + 1 = 6 2^{nd} term (n=2) = 5x2 + 1= 11 3^{rd} term (n=3) = 5x3 + 1 = 16

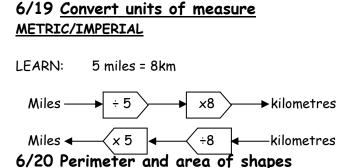
6/17 Possible solutions of a number sentence

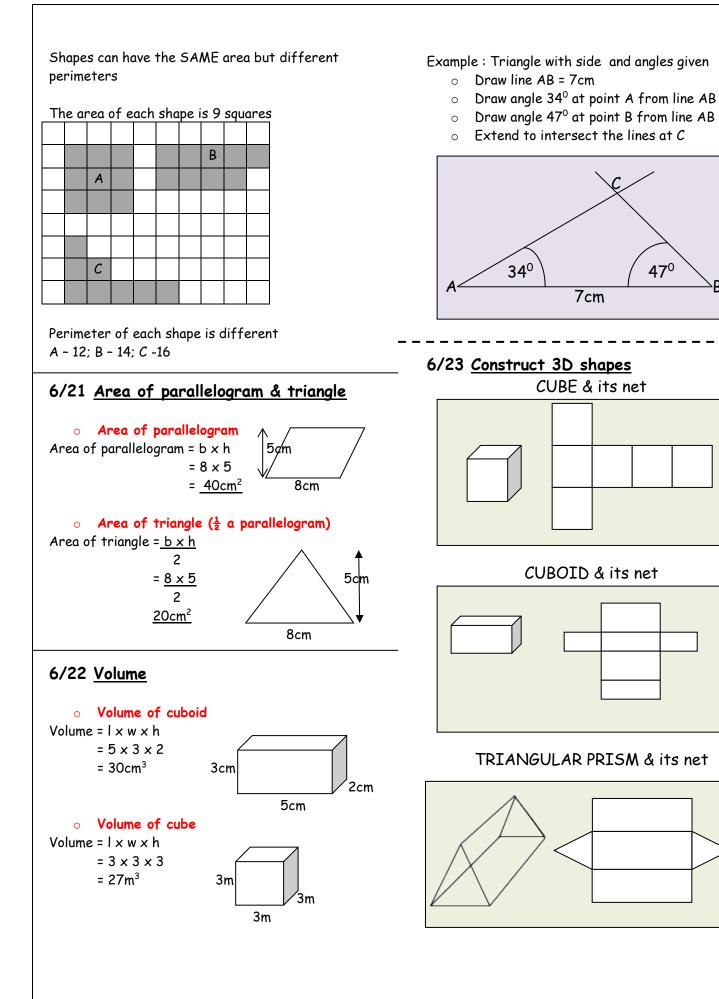
Example: x and y are numbers Rule: x + y = 5Possible solutions: x = 0 and y = 5x = 1 and y = 4x = 2 and y = 3x = 3 and y = 2x = 4 and y = 1x = 5 and y = 0

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

• When converting from a larger unit to a smaller unit we **multiply** (x)

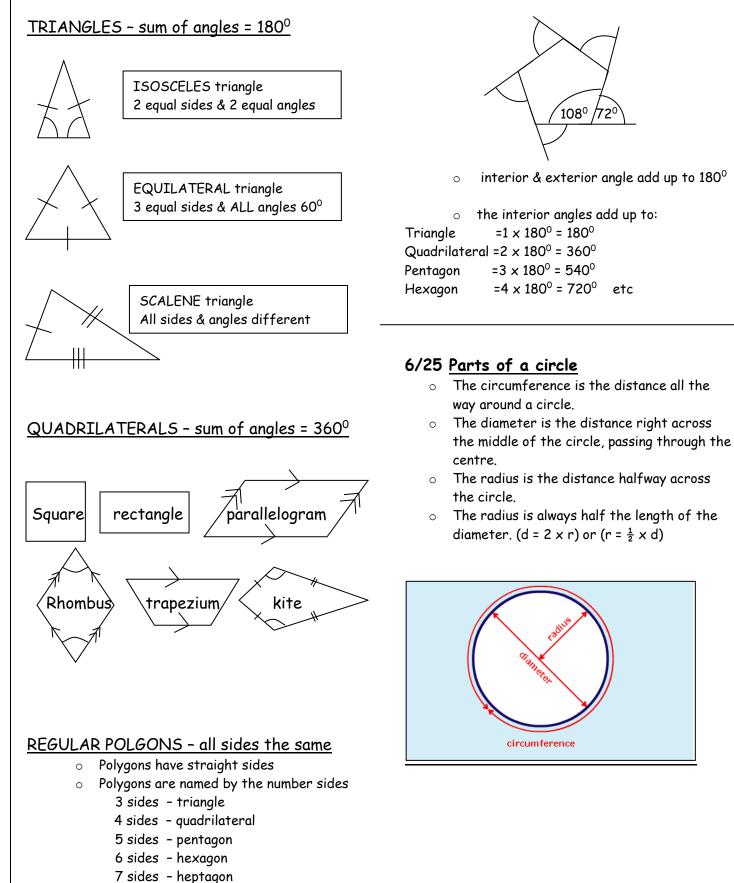

• When converting from a smaller unit to a larger unit we **divide** (÷)


UNITS of LENGTH 10mm = 1cm 100 cm = 1m1000m = 1km

UNITS of MASS 1000g = 1kg1000kg = 1tonne

UNITS of TIME 60 sec = 1 min60min = 1 hour 24h = 1 day365days = 1 year

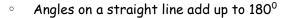
UNITS of VOLUME 1000ml = 1 litre 100cl = 1litre

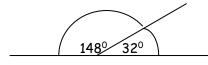


6/23 Construct 2D shapes

6/24 Properties of shapes

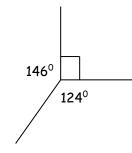
47⁰

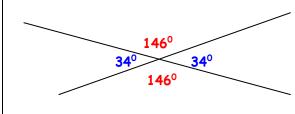

·B



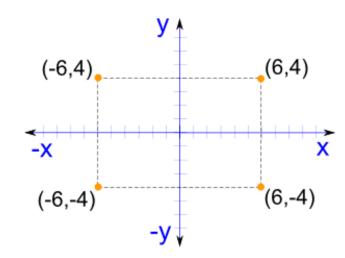
- 8 sides octagon
- 9 sides nonagon
- 10 sides decagon

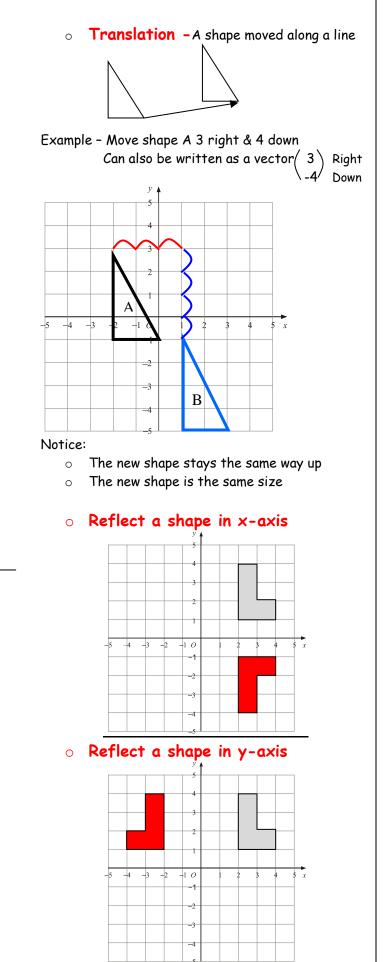
 \circ Sum of exterior angles is always 360^{\circ}


6/26 Angles and straight lines


 $148^{\circ} + 32^{\circ} = 180^{\circ}$

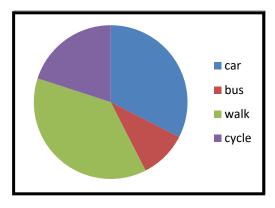
 \circ Angles about a point add up to 360^o




 $146^{\circ} + 90^{\circ} + 124^{\circ} = 360^{\circ}$

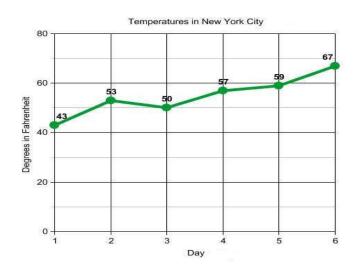
• Vertically opposite angles are equal

6/27 Position on a co-ordinate grid



6/28 Transformations

• Pie chart

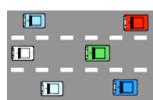

Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 × 9=36 ⁰
Walk	15	15 × 9=135
Cycle	8	8 x 9=72
	<u> </u>	

Total frequency = 40 360° ÷ 40 = 9° per person

• Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

The mean is usually known as the average. The mean is not a value from the original list. It is a typical value of a set of data



e.g.- Find mean speed of 6 cars travelling on a road

Car 1 - 66mph Car 2 - 57mph Car 3 - 71mph Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

6

= 62.5mph

Mean average speed was 62.5mph

6/30 The mean